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We present a model to describe a dynamic orientational response of a dilute suspension of single-domain
magnetic particles in a viscoelastic liquid carrier of the Maxwell fluid type. Introducing Brownian orientational
diffusion into the equation of the particle rotary motion, absorption spectra of the initial dynamic magnetic
susceptibility are obtained. Under appropriate conditions they display a complex comblike structure which
might be helpful for probing the local rheology of the carrier medium of a suspension.
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I. INTRODUCTION

For a variety of fine magnetic particle dispersions in liq-
uid matrices one may propose a conventional classification
with regard to the fluidity features of the carrier. Namely,
suspensions in Newtonian fluids, widely known asmagnetic
fluids or ferrofluids; suspensions in liquid crystals as well
called ferroliquid crystals; and suspensions in non-
Newtonian fluids.

Of these three kinds of fluid nanocomposites, the mag-
netic fluids have been extensively studied for a long time—
see books@1,2# and bibliographies@3#. Ferroliquid crystals,
initially addressed in Refs.@4,5#, are now under progressive
investigation@6,7#. However, the last item of the list has
hardly been touched as yet.

Even after having been distinguished from ordinary and
liquid-crystalline systems, ‘‘non-Newtonian magnetic sus-
pensions’’ is probably too general a name to use. One just
has to recall how variable in their properties possible carriers
~polymeric melt or solutions, biological systems, etc.! may
be.

Magnetic response of such media is to a great extent de-
termined by the mobility properties of the particles in their
fluid environment. For diluted suspensions, assuming that the
embedded particles are magnetically hard, the most essential
process is the orientational motion of an individual particle
inside the non-Newtonian matrix.

This paper carries on the theoretical studies of kinetics of
suspensions in viscoelastic media set out in Refs.@8–10#. We
derive and analyze the dynamic susceptibility of a statistical
assembly of fine ferroparticles in a Maxwell fluid. The latter
is a simple conventional model of a polymeric solution. Of
course, due to its simplicity, it gives up a lot of details rel-
evant for the behavior of a particular polymer. The gain,
however, is the opportunity to get acquainted with the effect
of retardation—probably the most general non-Newtonian
feature of polymeric solutions—on the frequency-dependent
magnetic response.

The applicational aspect of the present and similar@11#
studies is easy to recognize. Imagine a tiny amount of fine
dipolar particles dispersed over the volume of a tested me-
dium. Their motion is excited contactlessly by means of an
alternating external field that does not affect the liquid ma-

trix, and the dynamic polarization is recorded. Provided an
adequate interpretation is available, the amplitude-frequency
dependences of the response signal can yield essential infor-
mation on the local rheology of the carrier fluid. A successful
attempt of such an approach has been reported in Ref.@12#.
Apparently, more theoretical effort is needed for further
progress.

II. MAGNETIC PARTICLE IN A VISCOELASTIC FLUID

Let us consider a two-dimensional~2D! orientational mo-
tion of a single-domain magnetically rigid particle in a vis-
coelastic fluid. We choose the 2D representation for its utter
simplicity. The 3D one, though far more cumbersome in
mathematical treatment, would provide results differing from
ours by but numerical coefficients of the order of unity.

In the adopted framework a magnetic particle is a solid
disk of radius a confined in an arbitrary plane passing
through the direction of the applied magnetic fieldH, which
we take for the polar axis of the coordinate system. The
magnetic momentm of the particle is constant in its absolute
value and its direction inside the plane of the disk is fixed.
Orientation of the vectorm with respect to the polar axis is
defined by the angleq. Then the equation of the particle
rotary motion is written

I q̈1Q~ t !1mHsinq5y~ t !. ~1!

Here the dots denote differentiation with respect to time,I is
the moment of inertia of a particle when rotated about its
center,Q(t) is the resistance torque, and the noise torque
y(t) accounts for thermal motion in the fluid.

Adopting the Maxwell model of a viscoelastic fluid we
assume that the resistance torque exerted by the fluid carrier
on a rotating particle may be described by the equation

Q̇52
1

tM
~Q2Q0!, with Q05zq̇, ~2!

where z is the friction coefficient proportional to the fluid
viscosityh, andtM is the characteristic time of the elastic
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stress relaxation. Bothh andtM are the characteristics of the
fluid proper and as such are insensitive to the presence of
particles.

Though any extensive discussion of the Maxwell rheo-
logical model is beyond the scope of the present work, it
seems reasonable to recall that relationship~2! may be re-
garded as a valid one only for the fluids whose viscoelastic-
ity is to some extent pronounced, viz.,tM@t I , with the limit
tM /t I&1 being possibly incorrect. Heret I;I /z is the iner-
tial relaxation time—see Eq.~10! below. Indeed, for a con-
sistent derivation of the set of local equations~1! and ~2! a
conjugated problem of field-induced rotations of a solid body
and invoked by that velocity and deformation distributions in
the surrounding viscoelastic fluid should be solved. Among
other effects, fortM&t I at high frequencies a skin-layer
behavior must be expected with its specific transverse-wave
dispersion lawQ;( i21)Av, well known for Newtonian
fluids and not at all reflected in Eq.~2!. As a partial justifi-
cation of our use of Eq.~2!, we remark that for the Reynolds
numbers Re<1 this type of mechanical response takes place
when the skin-layer thicknessd;Ah/rv becomes compa-
rable with the particle size. However, for rotary oscillations
the conditions Re<1 and a,d reduce to one:vt I,1,
which in fact is adopted throughout our consideration.

To clarify the meaning of the relaxational equation~2!, let
us substitute there the angular displacement in the form
q5q (0)exp(2ivt). For the torque amplitude one finds

ReQ~0!5
zv2tM
11v2tM

2 q~0!, ImQ~0!5
zv

11v2tM
2 q~0!.

At low frequencies (vtM!1) only the imaginary part of the
resistance is relevant, which leads toQ'2 i ImQ}q̇, mean-
ing that the torque is predominantly viscous. The case of the
Newtonian fluid is recovered atv→0, whereQ5Q0—see
Eq. ~2!. At high frequencies one hasQ'ReQ}q, as if the
medium were transformed into a Hookean elastic body with
the effective strain modulush/tM . In this case the response
has a reversible, nondissipative, character. In the intermedi-
ate range the reaction of the fluid is a superposition of vis-
cous~fluidlike! and elastic~solidlike! contributions.

As has been shown in Ref.@9#, the random torque in Eq.
~1! is ‘‘colored’’ with a correlation timetM . However, in-
troducing an auxiliary white noisef (t), one may treaty(t) as
a dynamic variable which evolves according to the equation

R̂y[S 11tM
d

dtD y5 f ~ t !, ^ f ~ t ! f ~0!&52zkBTd~ t !.

~3!

Adding these relationships to Eqs.~1! and~2!, one obtains a
closed set of stochastic equations with a standard noise. Note
that the linear retardation operatorR̂ entering the left-hand
side of Eq.~3! coincides with that of Eq.~2! for Q. That
means that the thermal and resistance torques have the same
type of frequency dispersion. Upon elimination ofQ andy,
Eqs. ~1!–~3! unite, rendering the Langevin equation of the
problem that reads

q̈1
1

tM
q̈1

1

I S z

tM
1mH cosq D q̇

52
m

I tM
~sinq!R̂H1

1

I tM
f ~ t !. ~4!

Equation ~4! provides a starting point for any statistical de-
scription of the particle assembly in question, derivation of
the Fokker-Planck equation, for example.

III. DYNAMIC SUSCEPTIBILITY

Some results on formulation and solution of the corre-
sponding kinetic equation are presented elsewhere@10,13#.
This way is rather universal but laborious as well. To obtain
the initial susceptibility, which is our main goal here, it is
more feasible to use the linear response approach. According
to the Kubo-Tomita theorem~see,@14# for example!, the dy-
namic susceptibility may be expressed through the equilib-
rium correlation function of the observable quantity. For the
system in question we choose as such the component of the
induced magnetization in the direction of the probing field
H:

M ~ t !5cmp~ t !, where p~ t !5p@q~ t !#[cosq~ t !,

andc is the number concentration of the particles. Then the
pertinent formula reads

x~v!/x052E
0

`

dteivt
d

dt

^p~ t !p~0!&

^p2&
, ~5!

wherex05cm2/2kBT is the static susceptibility of an assem-
bly of noninteracting magnetic dipoles, and the angular
brackets denote the statistical average over the equilibrium
field-free (H50) state.

Using the well-known trigonometry formulas, the correla-
tion function may be rearranged as

^p~ t !p~0!&5 1
2 ^p@q~ t !2q~0!#1p@q~ t !1q~0!#&

5 1
2 ^p~Dq!&. ~6!

Here Dq5q(t)2q(0), and for astationary process the
term containing the sum of angles vanishes. For evaluation
of the equilibrium correlation function, one has to know the
statistical properties of the assembly. It is easy to see that the
angleq is the Gaussian random variable. Indeed, according
to Eq. ~4!, atH50 it obeys a linear equation, the right-hand
side of which is the Gaussian function—the white noisef .
Performing the averaging with the Gaussian distribution
function, one gets~see Ref.@15#, for example!

^p~Dq!&5exp@2 1
2 ^~Dq!2&#, ~7!

thus expressing the sought for dipolar correlation function
via the mean-square angular fluctuation.

To find the latter, let us present the field-free solution of
Eq. ~4! as
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q̇~ t !5
q̇~0!

Dl
~l1e

l2t2l2e
l1t!1

q̈~0!

Dl
~el1t2el2t!

1
1

I tMDlE0
t

dt8 f ~ t8!@el1~ t2t8!2el2~ t2t8!#, ~8!

where q̇(0) and q̈(0) are the initial values of the angular
velocity and acceleration, respectively, and the decrements
l are defined by the characteristic equation

l21l/tM11/tMt I50. ~9!

Here we have introduced the ‘‘inertial’’ time

t I5I /z, ~10!

determining the relaxation rate of the angular momentum for
a particle with the moment of inertiaI and friction coeffi-
cient z. The solution of Eq.~9! yields

l652
1

2tM
6 iA 1

t ItM
2

1

4tM
2 , Dl5l12l2 .

Therefore one sees that attM@t I /4 the system behaves as an
oscillator with eigenfrequencies resulting from the interplay
between the inertia of the particle and the elasticity of its
environment. Multiplying Eq.~8! by q̇(0) and averaging
over the assembly, one finds

^q̇~ t !q̇~0!&5^q̇2~0!&@l1e
l2t2l2e

l1t#/Dl. ~11!

While writing down this expression, we have taken into ac-
count that̂ q̇(0)q̈(0)&50.

Since the phase and the angular velocity are related by
definition

Dq~ t !5E
0

t

dt8q̇~ t8!,

the general expression for the equilibrium mean-square fluc-
tuation of the phase is

^~Dq!2&52E
0

t

dt8E
0

t8
dt9^q̇~0!q̇~ t82t9!&. ~12!

Substitution of Eq.~11! in ~12! upon integration gives

^~Dq!2&5
2kBT

IDl Fl2
2 2l1

2

l1l2
t1

l2
3 2l1

3

l1
2 l2

2

1
l1

l2
2 e

l2t2
l2

l1
2 e

l1tG ,
where we assume equipartition for the mean-square angular
velocity, i.e.,^q̇2(0)&5kBT/I . After simple algebraic trans-
formations the mean fluctuation takes the form

^~Dq!2&5
2

tD
F t1tM2t I1

tM

A121/4M

3expS 2
t

2tM
D cos~vMt2c!G , ~13!

with

vM5
1

2tM
A4M21, tanc5

123M

~12M !A4M21
,

M5
tM
t I
. ~14!

As we are dealing with a thermalized system, the rate of
the particle orientational diffusion determined by the Debye
time

tD5z/kBT ~15!

necessarily enters Eq.~13!. For extremely short times
(lt!1) Eq. ~13! yields the dynamic result

^~Dq!2&5~kBT/I !t
25^q̇2&t2,

and in the Newtonian fluid limit (tM→0) it reduces to the
well-known relationship~see,@15# for example!

^~Dq!2&5
2

tD
@ t2t I~12e2t/t I !#.

Substituting sequentially Eq.~13! into ~6! and ~7! and those
into Eq.~5!, one gets for the initial dynamic susceptibility of
a viscoelastic magnetic suspension

x~v!/x0511 ivE
0

`

dteivtG~ t !, ~16!

G~ t !5expH 12M

D F12e2t/2tM
cos~vMt2c!

cosc G J e2t/tD,

~17!

whereD5tD /t I . From formula~17! it is clear that the re-
laxation time ratiosM andD are the principal dimensionless
parameters of the problem.

It is important to emphasize that the correlator~17! for the
observable quantity, i.e., magnetization, unlike the angular
correlator~13!, is a nonlinear function of the phase fluctua-
tion. Due to that, as it is shown below, the spectrum of the
dipolar susceptibility may contain multiples of the unique
resonance frequency inherent to more simple, but essentially
nonobservable, angle oscillations. The same circumstance
accounts for the additivity of orientational diffusion and vis-
coelasticity contributions to Eq.~13! and multiplicativity of
those in Eq.~17!.

Even an approximate analysis of the obtained susceptibil-
ity ~16! and~17! is rather cumbersome. It is due, in particu-
lar, to a number of reference times in Eqs.~13! and ~17!.
Indeed, besides three relaxation times, viz.,t I , tM , and
tD , one more time scale, namely, the eigenfrequency
vM51/At ItM of particle rotary oscillations defined by Eq.
~14!, enters the pertinent formulas. To facilitate consider-
ations, let us take the inertial timet I as a minimal time scale.
This choice is ensured by the fact that its characteristic value
even for rather large grains (a;103 nm! and inviscid liquids
(h;1022 P, like water! is rather small
(t I;a2/10h;1026 s!. With an objective to study the effect
of viscoelasticity, we assume that
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t I!AtMt I!tM , ~18!

see also the comment following Eq.~2!. Given that, one may
expect that the actual form of the frequency dependence of
the dynamic susceptibility is determined by the relative po-
sition of the Debye timetD in the time scale~18!. Therefore
at least three kinds of suspensions with regard to the matrix
viscoelasticity~VE! must be distinguished:

AtMt I,tM,tD ~weak!,

AtMt I,tD,tM ~developed!, ~19!

tD,AtMt I,tM ~strong!.

The essential differences between the spectra of the systems
with different VE extent may be seen right from Fig. 1
~quantitative evaluations are given in the following section!,
where curvea corresponds to weak,c to developed, andd to
strong VE, whereas curveb is the border case between weak
and developed VE.

IV. ABSORPTION SPECTRA

The integral Eq.~16! cannot be taken analytically. How-
ever, its numerical evaluation does not cause too many dif-
ficulties. A set of numerically obtained curves for the absorp-
tion lines x95Imx(v) is presented in Fig. 1. To improve
their understanding, let us first establish some general prop-
erties of the dipolar susceptibility. To do that, we expand the
correlation function~17! in a series with respect to the di-
mensionless parametertM /tD5M /D under the assumption
that bothM ,D@1. This yields

G~ t !5e2q(
k50

`
qk

k! ~cosc!k
exp~2gkt !cos

k~vMt2c!,

~20!

where

q5
tM
tD

, gk5
1

tD
1

k

2tM
, vM5

1

AtMt I
, tanc5

3

2AM
.

~21!

Replacing cosine by its complex representation, one arrives
at

G~ t !5e2q(
k50

`
~ q̃/2!k

k!
exp~2gkt !(

l50

k

Cl
kexp@ i ~k22l !a#.

~22!

Here q̃5q/cosc, a5vMt2c, and Cl
k5k!/(k2 l )! l ! is a

binomial coefficient. The double sum~22! may be trans-
formed into one in which the exponents equalling multiples
of the eigenfrequencyvM are ordered, that gives

G~ t !5e2q (
n50,61,62, . . .

eian(
l50

`
~ q̃/2! unu12l

l ! ~ unu1 l !!
e2g unu12l t.

~23!

While writing down expansion~23! we have taken into ac-
count that its amplitudes are even in the indexn. The same

formula may be obtained directly from expansion~22! upon
substitutionn5k22l and appropriate change of the summa-
tion limits.

Using correlator~23! in the Kubo formula~16!, and per-
forming the now elementary time integration, one finally gets
the representation of the susceptibility as

FIG. 1. Absorption lines for a situation when the particle size is
constant (D5102) whereas the stress relaxation time of the carrier
fluid increases: curvesa–d correspond toM510 (q50.1), 102

(q51), 103 (q510), and 104 (q5102). In the framework of con-
ditions ~19!, casea accounts for weak,b andc for developed, andd
for strong viscoelasticity of a suspension. In patternsa–c down-
ward arrows show the position where the Debye relaxational maxi-
mum should be located; upward arrows indicate the points
v5vM ,2vM , . . . of approximate locations of the maxima of the
comblike spectra. The arrow in curved corresponds to the position
of the mean thermal angular velocity.
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x~v!/x0511 ive2q(
l50

`
~ q̃/2!2l

l ! H 1

~g2l2 iv!l !
12(

n51

`
~ q̃/2!n

~n1 l !!

~gn12l2 iv!cos~nc!1nvMsin~nc!

~nvM !21gn12l
2 2v222ivgn12l

J . ~24!

The latter expression is convenient for a qualitative analy-
sis. Let us begin with the case of weak VE, i.e.,tM!tD as
defined by Eq.~19! or q!1 in Eq. ~24!. For that with the
first-order accuracy one finds

x~v!/x05
12q

12 ivtD
1

qvM

2~vM2v!2 i /tM
, q!1.

~25!

We remark that this result coincides with the one obtained in
Ref. @9# by a direct solution of the Langevin equation~4!
using the approximate method by Coffey@16#.

The meaning of Eq.~25! is clear. Its first term yields the
usual Debye susceptibility but slightly reduced by a weak
viscoelasticity of the carrier liquid. The second term, being a
Lorentzian, reflects the oscillatory character of relaxation in
an assembly of magnetic particles embedded in a medium
possessing dynamic elasticity. All the overtones (2vM and
higher! in this limit are beyond resolution. When trans-
formed to the absorption spectrumx9(v), formula~25! gives
curves very close to that presented in curvea of Fig. 1. As
Eq. ~25! shows, the width of the right peak~VE resonance!
of the imaginary part of the susceptibility isDv'1/tM and
its height isxmax9 ;tMAM /tD . This means that the peak
becomes untraceable as soon astMAM!tD . Therefore the
latter relationship may be regarded as the ultimate observ-
ability condition for a viscoelasticity of magnetic suspen-
sions, below which from the magnetic spectroscopy view-
point they do not differ from ordinary Newtonian ones.

As the viscoelasticity increases~parameterq grows and
exceeds unity!, the case of developed VE@see conditions
~19!# takes place. Then, according to formula~24!, the peaks
at multiple (2vM , 3vM , . . . ! frequencies become pro-
nounced. In the vicinity of each resonance, expression~24!
simplifies considerably, and the susceptibility may be pre-
sented as a superposition of Lorentzians:

x~v!/x0.11e2q(
n51

`

Vn(
l50

`
~q/2!n12l

~n1 l !! l !

~Vn2v!1 ign12l

~Vn2v!21gn12l
2 ,

uVn2vu!vM ~26!

whereVn5A(nvM)
21gn12l

2 .nvM . The imaginary part of
the susceptibility, i.e., the function proportional to absorp-
tion, emerges from~26! as a sequence of equidistant peaks~a
comblike pattern!. This kind of behavior is illustrated by
curvesb andc of Figs. 1. The numerical analysis shows that
the curves enveloping the combs descend monotonically
when the ratio of the relaxation timesq5tM /tD,2,
whereas forq.2 they have a maximum which lies approxi-
mately at the frequencyvMAq. We remark that the latter
quantity is equal to the mean value of the particle angular
velocityv5AkBT/I over the Gaussian distribution. As such

it is a fundamental characteristic of the equilibrium statistical
assembly, and does not depend on the rheological parameters
of the carrier liquid.

Together with the enveloping profile, the viscoelasticity
growth affects the structure of each peak. Atq,2 the re-
solved peaks with high accuracy are single Lorentzians ho-
mogeneously broadened. But atq.2 each peak turns out to
be a pack of closely positioned Lorentzians with comparable
amplitudes that means domination of the nonhomogeneous
broadening. Unlike weak VE, in a system with a developed
viscoelasticity the rate of particle rotary diffusion is equal to
or higher than that of stress relaxation. Under the joint influ-
ence of both processes the effective width of a peak becomes

Dvn'gn5
1

tD
1

n

2tM

@see Eq.~21!# where now both terms are relevant.
On further increase ofq, the number of resolved peaks

grows unboundedly (;Aq) whereas their widths remain vir-
tually constantDvn.1/tD(11n/q).1/tD , wheren is the
peak’s number. Simultaneously, the interpeak distances de-
crease asvM5v/Aq. This ends up at the limiting contour
where the peaks eventually fuse, forming a smooth cusp
whose maximum sits atv—see curved of Fig. 1. It is but
natural that the condition of fusion of the neighboring peaks
(vMtD&1) renders the last line of Eq.~19!, i.e., the strong
VE limit.

Let us look at strong VE in more detail. The condition of
peak fusionvMtD&1 means that, unlike the cases of weak
and developed VE, now the frequency of particle rotary os-
cillations becomes smaller than the rate of orientational~De-
bye! relaxation. In other words, these oscillations would not
contribute to the susceptibility. For quantitative consider-
ation, the previously used expansion with respect to param-
eterq5tM /tD is not feasible any longer. However, revisit-
ing the general expression~17! for the dipolar correlation
function, it may be shown that for the system in question it
reduces to

G~ t !5exp~2v̄2t2/2!, vMtD,1, ~27!

reflecting the fact that under strong VE the main contribution
to the susceptibility is yielded by the dynamical range of the
phase fluctuation. During those short intervals one may as-
sume that each particle of the assembly undergoes free rota-
tion whereas the spreadout of the angular velocities is deter-
mined by the equilibrium distribution function. Hence
^Dq2&5^q̇2&t25(kBT/I )t

2. Substitution of correlator~27!
into the Kubo formula~16! gives
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x~v!/x0511 ivE
0

`

dtexp@ ivt2~kBT/2I !t
2#

5122xexp~2x2!E
0

x

dtet
2
1 iApxe2x2, ~28!

where x5v/(A2v̄). The imaginary part has a maximum
xmax9 /x05Ap/2e'0.76 atx5A2/2.

Therefore at strong viscoelasticity the dipolar susceptibil-
ity of a suspension tends to that of a system of noninteracting
plane rotators~see Ref.@17#, for example!. As it might have
been expected, in this limit the susceptibility lines are
smooth with a maximum aroundv̄, as in curved of Fig. 1.
Thex9 curve being nonsingular and positive means that the
system absorbs the field energy despite vanishing of the con-
tribution of the viscous term. For a qualitative understanding
of such a behavior, one has to recall that in a thermalized
assembly a number of particles which oscillate with the rates
close to the external frequencyv is ever present. In fact,
only this fraction of all the particles may indeed be consid-
ered to be in a strong coupling with the field. Of this number,
those which have angular velocities slightly less thanv are
accelerating and, thus, absorb power, whereas other particles
decelerate, giving the power back to the field. Since in a
thermodynamical~equilibrium! system the particle energy
distribution w(E) is always a diminishing function ofE,
dissipation always exceeds generation thus yielding positive
absorption. This type of dissipation is known asthe Landau
damping@18#. In the molecular spectroscopy theory, where
the formulation of the problem happens to be rather close to
the one under discussion, the Landau damping has been con-
sidered in Ref.@17#.

V. DISCUSSION

The presented results are the outcome of a kinetic treat-
ment. To assess them more clearly, a comparison with some
other model would have helped a lot. However, we do not
know of any already developed model of that kind. Because
of that we would propose a simple alternative by ourselves.
A phenomenological concept is the first to cross one’s mind
when setting about a study of a viscoelastic suspension. The
corresponding model might be calledthe dispersive viscosity
approximation.

As is well known~see,@19# for example!, the phenomeno-
logical equation governing the evolution of macroscopic
magnetization in a suspension of rigid dipoles is

tD
dm

dt
1m5x0H, ~29!

wheretD is defined as in Eq.~15!. Inclusion of inertia trans-
forms Eq.~29! into

I

kBT

d 2m

dt 2
1tD

dm

dt
1m5x0H. ~30!

Now, bearing in mind that the resistance coefficientz and
hencetD are proportional to the viscosity of the matrix, we
introduce its dispersion. For that purpose we replace in Eq.
~30! the resistance torque by some instantaneous value

I

kBT

d 2m

dt 2
1Q̃1m5x0H, ~31!

assuming that the stationary regime is achieved in a time
period tM . Then the simplest equation determiningQ̃ is
written as

tM
dQ̃

dt
52Q̃1tD

dm

dt
. ~32!

Equations~31! and~32! form a closed set from whichQ̃ may
be eliminated by differentiation to yield

t ItMtD
d 3m

dt 3
1t ItD

d 2m

dt 2
1~tD1tM !

dm

dt
1m

5x0SH1tM
dH

dt D , ~33!

if we define the inertial time as in Sec. III. What is most
essential here is that in the frame of the phenomenological
approach Eq.~33!, unlike Eq.~4!, is considered to be mac-
roscopic, i.e., final. The dynamic susceptibility yielded by
Eq. ~33! is

x

x0
5

12 ivtM
~12 ivtM !~12v2t ItD!2 ivtD

. ~34!

This expression coincides with our previous results@9,13#
for x obtained either by using the Coffey method or by a
direct solution of the Fokker-Planck equation in the lowest
order. It is easy to see that Eq.~34! always gives just one
high-frequency peak ofx9, and never the comblike spectrum
matching the weak VE case considered in Sec. IV. Therefore
the dispersive viscosity assumption, however reasonable it
may seem, is rather rough and has a limited validity. Its
power is entirely exhausted at the point where the kinetic
description just appeals for some extra accuracy. On doing
that, the kinetic approach gives fruitful insight into the dy-
namic properties of the system and yields conclusions which
are rather nontrivial.

We remark that certain results akin to those presented in
Sec. II–IV have been dealt with some time ago in the mo-
lecular spectroscopy theory when linear non-Markovian sto-
chastic processes were put under study. In particular, a mul-
tipeak spectral pattern has been obtained@20# with the
itinerant oscillator approximation@21,15#. In this scheme a
molecule is modeled by a conjunction of two coaxial rota-
tors. The dipole moment is located in the inner one which is
free except for being coupled through an elastic bond to the
peripheral. This is the latter that is assumed to be subjected
to both viscous resistance and random thermal torques. How-
ever, in molecular liquids the domain of material parameters
where the multipeak structure might resolve turned out to be
over the edge of the physical realm.

We also would like to point out a striking resemblance
between the lines of the type of curvec of Fig. 1 and the
far-infrared spectra of dipolar molecules embedded in non-
polar fluids. If we take a glance at the absorption lines of
HCl dissolved in liquid noble gases which are analyzed in
papers@22,23#, both the series of equidistant spikes and the
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enveloping cusp centered atv̄ are clearly distinguishable.
However, one must be well aware that despite their topologi-
cal coincidence those comblike patterns are of a completely
different origin. Our curves are the results of a classic treat-
ment whereas the mentioned molecular spectra reflect the
quantum rotational structure of HCl. In particular, it is easy
to see that the basic frequency for the pattern of curvec of
Fig. 1 is vM5AI tM/z ~and thus changing with the fluid
viscoelasticity! but it is;\/I ~and thus fundamental! for the
HCl spectra.

Finally, let us show that with composite fluid media like
viscoelastic magnetic suspensions, the multipeak patterns are
well achievable, at least in principle. For estimates we take a
spherical solid particle of a radiusa;0.1mm in a Maxwell
fluid with the viscosityh;1 P and the stress relaxation time
tM;0.1s. Then it yields

t I;a2/h;10210 s, tD;a3h/kBT;331022 s,

that corresponds to the dimensionless numbersM5109,
D53•108, the characteristic frequencyvM;3•105 and the
linewidth Dv;102100 rad21, which are rather customary
for magnetic susceptibility measurements. However, prior to
an attempt of experimental verification of the given predic-
tions, one essential point must be clarified; that is, how the
distributions of stress relaxation times and particle sizes
which are always present in any suspension would affect the
fine structure of the spectral patterns.
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